## Research topics for graduate students for 2023

# Associate Professor Kanako Harada

Department of Mechanical Engineering

Acceptable course(s)

- Master's Degree
- Doctoral Degree

### **Research Topics**

The research topics include medical robots for assisting with neurosurgery, pediatric surgery, eye surgery and pathological tasks, surgical skill assessment, VR simulators, and robots for autonomous scientific experiments.

### 1. Surgical robots

We have been developing a surgical robotic system that can be used for several applications. The figure shows a surgical robotic system named SmartArm that is demonstrating robotic endonasal suturing of a dura mater model [1]. The same robotic system is applicable to pediatric surgery [2] and eye surgery [3]. We have also been developing VR simulators and image processing technologies to partially automate robotic tasks.

### 2. Robot for autonomous scientific experiments

A new robotic platform is being developed to study the automation of scientific experiments. Automation of dexterous manipulation of samples that are small, deformable and fragile is a key technology for future robotic technology as well as future robotic surgery. The robotic system can be tele-operated, and human manipulation skills will be collected by tele-operational demonstrations and studied to extract manipulation skills.



### **Articles Related to Research Topics**

[1] MM. Marinho, et al. "SmartArm: Integration and Validation of a Versatile Surgical Robotic System for Constrained Workspaces", IJMRCAS, 16:e2053, 2020. DOI: 10.1002/rcs.2053

[2] MM Marinho, et al. "SmartArm: Suturing Feasibility of a Surgical Robotic System on a Neonatal Chest Model",
IEEE TMRB, 3(1):253–256, 2021. (Short paper) DOI: 10.1109/TMRB.2021.3049878

[3] Y. Koyama, et al, "Autonomous Coordinated Control of the Light Guide for Positioning in Vitreoretinal Surgery," IEEE TMRB, 4(1): 156-171, 2022. DOI: 10.1109/TMRB.2022.3147033.

Lab. Web page: http://www.nml.t.u-tokyo.ac.jp



